Laws and Standards II EMC

Johan Nilsson Inst f elektrisk mätteknik

EMC - Electromagnatic compatibility

- The ability of electrical and electronic systems to operate without interfering with other systems (emission).
- The ability of such systems to operate as intended within a specified electromagnetic environment (immunity).

Examples on electromagnetic phenomena that may interfere

- Supply voltage interruptions, dips, surges and fluctuations
- Transient overvoltages on supply, signal and control lines
- Radio frequency fields, both pulsed (radar) and continuous, coupled directly into equipment or onto its connected cables
- Electrostatic discharge (ESD) from a charged object or person
- Low frequency magnetic or electric fields

Disturbances on the mains supply

- Voltage variations, 230 V ±10%.
- Voltage fluctuations, Ex: Starting a vacuum cleaner.
- Voltage interruptions. Faults on power distribution systems are normally clearedquickly and automatically but result in short voltage dips.
- Waveform distorsion, non-linear loads.
- **Transients and surges**, switching of inductive loads, lightning strikes.

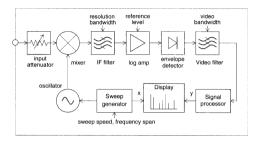
Generic emission limits

Emission, generic

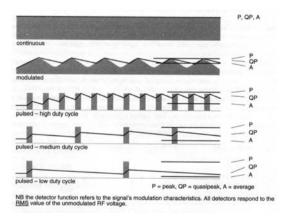
Residential, commercial and light industry EN 61000-6-3:2001				
LN 01000-0-3.2001	Frequency range	Limit	Comment	
Complete apparatus	30 - 230 MHz	30 dBuV/m (10 m)	EN 55022 class B	
	230 - 1000 MHz	37 dBuV/m (10 m)		
AC-power supply	0 - 2 kHz	flicker and harmonics EN 61000-3-2,3		
	0,15 - 0,5 MHz	66-56/56-46 dBuV	EN 55022 class B	
	0,5 - 5 MHz	56/46 dBuV	Quasi peak/average	
	5 - 30 MHz	60/50 dBuV		
	0,15 - 30 MHz	clicks	EN 55014	

Industry			
EN 61000-6-4:2001			
	Frequency range	Limit	Comment
Complete apparatus	30 - 230 MHz	40 dBuV/m (10 m)	EN 55011
	230 - 1000 MHz	47 dBuV/m (10 m)	
AC-power supply	0 - 2 kHz	flicker and harmonics	EN 61000-3-2,3
	0,15 - 0,5 MHz	79/66 dBuV	EN 55011
	0,5 - 5 MHz	73/60 dBuV	Quasi peak/average
	5 - 30 MHz	73/60 dBuV	
	0,15 - 30 MHz	clicks	EN 55014

Generic immunity limits

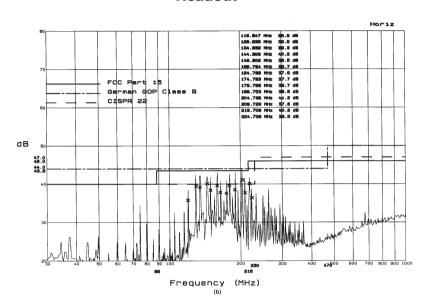

Immunity, generic

Residential, commercial and light industry EN 61000-6-1:2001					
Complete apparatus	Electromagnetic	80 - 1000 MHz	EN 61000-4-3		
	RF-fields	3 V/m			
	Electrostatic	4 kV contact	EN61000-4-2		
	discharge (ESD)	8 kV airgap			
All cables	Conducted RF	0,15 - 80 MHz	EN61000-4-6		
and prot earth		3V			
		1 kHz, 80% AM			
Signal and control cables	Fast transients	0,5 kV	EN61000-4-4		
AC-power supply	Fast transients	1 kV	EN61000-4-4		
in/out	Surge	1 resp. 2 kV	EN61000-4-5		
	Voltage dips		EN61000-4-11		
DC-power supply	Fast transients	0,5 kV	EN61000-4-4		
in/out	Surge	0,5 kV	EN61000-4-5		

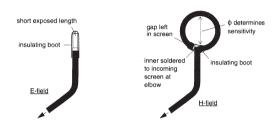

Industry					
EN 61000-6-2:2001					
	Phenomenon	Test specification	Comment		
Complete apparatus	Electromagnetic	80 - 1000 MHz	EN 61000-4-3		
	RF-fields	10 (3) V/m	Level varies with		
		1 kHz, 80% AM	frequency		
	Electrostatic	4 kV contact	EN61000-4-2		
	discharge (ESD)	8 kV airgap			
All cables	Conducted RF	0,15 - 80 MHz	EN61000-4-6		
and prot earth		10 (3) V	Level varies with		
		1 kHz, 80% AM	frequency		
Signal and control	Fast transients	1 kV	EN61000-4-4		
cables	Surge	1 kV	EN61000-4-5		
AC-power supply	Fast transients	2 kV	EN61000-4-4		
in/out	Surge	1 resp. 2 kV	EN61000-4-5		
	Voltage dips		EN61000-4-11		
DC-power supply	Fast transients	2 kV	EN61000-4-4		
in/out	Surge	0,5 kV	EN61000-4-5		

Emission measurements

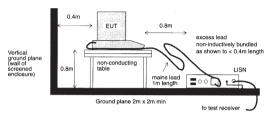
The spectrum analyzer



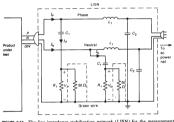
Quasi-peak, Peak and Average detector


Emission measurements

Readout


Emission measurements

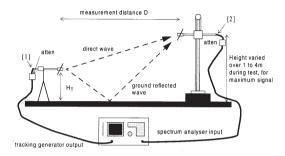
Near field probes



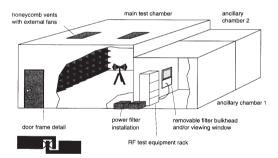
Emission measurements

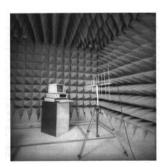
Conducted emissions

LISN - Line Impedance Stabilisation Network

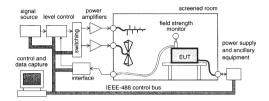


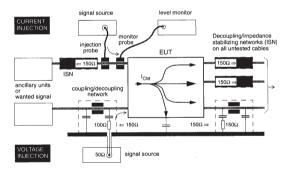
HGURE 2.15 The line impedance stabilization network (LISN) for the measurement of conducted emissions.


Emission measurements


Radiated emissions

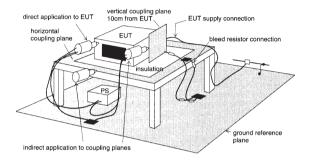
Open air measurements


Shielded, attenuated test chamber

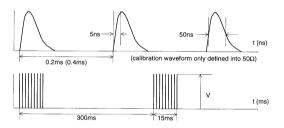


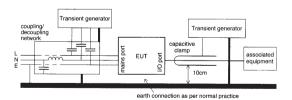
Immunity measurements

Radiated immunity



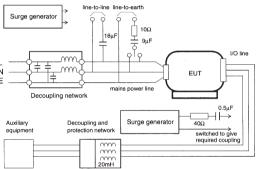
Conducted immunity




Immunity measurements

ESD

Fast transients



Immunity measurements

Surge

Coupling mechanisms

Coupling paths

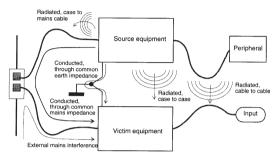
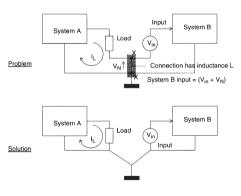
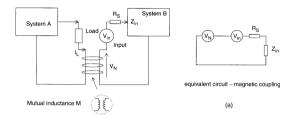
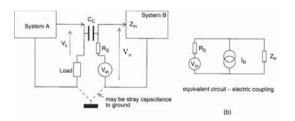



Figure 5.1 Coupling paths


Common impedance coupling

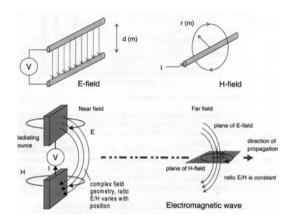
 $V_N = -L \cdot dI_I/dt (+ R \cdot I_I)$

Coupling mechanisms


Inductive coupling

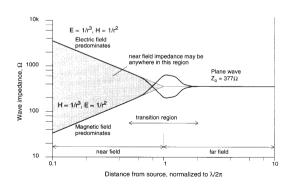
$$V_{N} = -M \cdot dI_{L}/dt$$

M - Mutual inductance

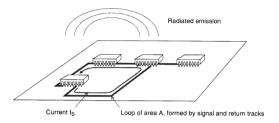

Capacitive coupling

$$V_N \approx C_C \cdot dV_L/dt \cdot Z_{in}//R_S$$

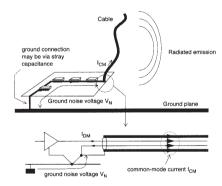
Coupling mechanisms


Radiated coupling

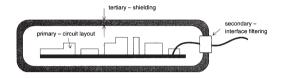
Wave impedance

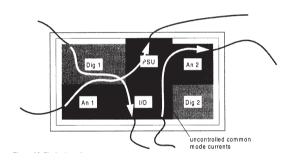

$$Z_{W} = E/H$$

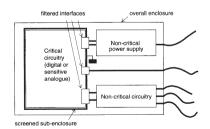
$$\mathbf{Z}_{0} = (\mu_{0}/\epsilon_{0})^{0.5} = 120\pi \approx 377\Omega$$



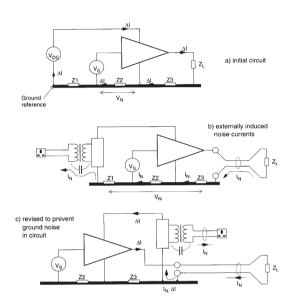
PCB radiation


Differential mode radiation

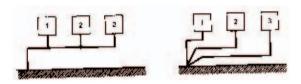

Common mode radiation

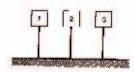


EMC control measures

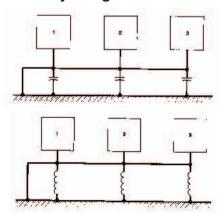

System partitioning

Layout and grounding

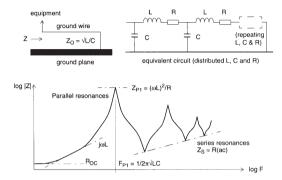

Grounding example


Signal ground

• Low impedance path for the return current

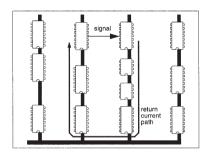

Single point ground, < 1 MHz

Multi point ground, > 10 MHz

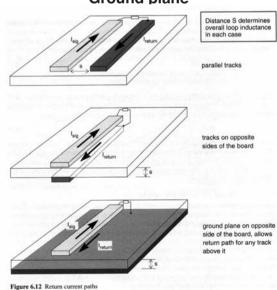


Hybrid ground

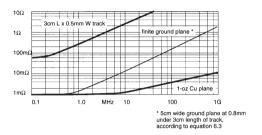
Layout and grounding


Impedance of long ground wires

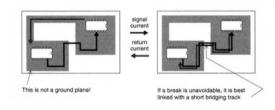
Grounding principles

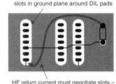

- All conductors have a finite impedance which increases with frequency
- Two physically separate ground points are not at the same potential unless no current flows between them
- At high frequencies there is no such thing as a single point ground

PCB layout Undesired comb structure

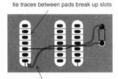

- High impedance return path (high inductance)
- Differential mode radiation!

Ground plane



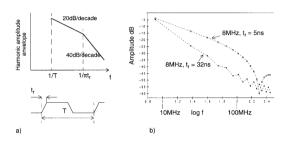

Layout and grounding

Ground plane - track impedance



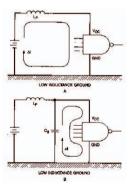
Ground plane breaks

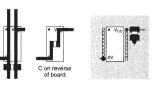
HF return current must negotiate slotsgreater loop area is equivalent to excess ground inductance


HF return current can choose optimum return path – minimum loop area means lowest ground inductance

Grounding rules

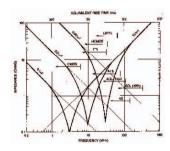
- Identify the circuits of high di/dt (for emissions) clocks, bus buffers/drivers, high-power oscillators
- Identify sensitive circuits (for susceptibility) low-level analogue, fast digital data
- Minimize their ground inductance by -
 - Minimizing the length and enclosed area
 - Implementing a ground plane
 - Keeping critical circuits away from the edge of the plane
- Ensure that internal and external ground noise cannot couple out of or into the system: incorporate a clean interface ground
- Partition the system to control common mode current flow between sections
- Create, maintain and enforce a ground map


Digital circuits


Pulse signal spectrum

• Do not choose faster logic circuits than necessary

Decoupling of supply voltage

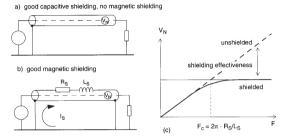

d) as c) with series L

a) adequate b) improved c) on ground plane

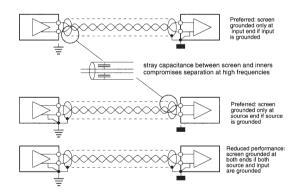
Digital circuits

Decoupling capacitors

- Must be able to handle fast current transients
- Ceramic capacitor is normally suitable
- Resonance frequency!
- Do not use too large capacitors

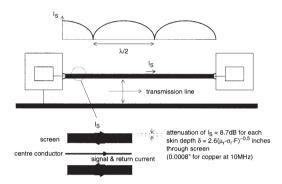


Decoupling recommendations, typical values

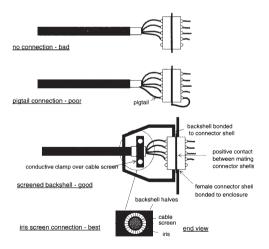

- One $22\mu\text{F}$ bulk capacitor (tantalum or electrolyte) per board at the power supply input
- One 1 μF tantalum capacitor per 10 packages of SSI/MSI logic or memory
- One 1 μ F tantalum capacitor per 2-3 LSI packages
- One 22 nF ceramic or polyester capacitor for each octal bus buffer/driver IC or for each MSI/LSI package
- one 22 nF ceramic or polyester capacitor per 4 packages of SSI logic

Cable screens

Low frequencies - electric - magnetic field shielding



Grounding of cable screens at low frequencies



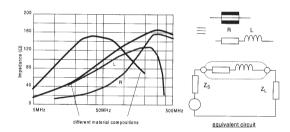
Cable screens

Cable screens at high frequencies

Goood and bad connections

Cable screens

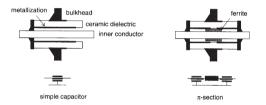
Ribbon cables



Filtering

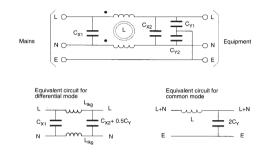
Layout

Ferrites

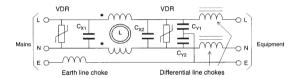

- Longer is better than thicker
- Get maximum amount of material in the chosen volume

Filtering

Three-terminal capacitor

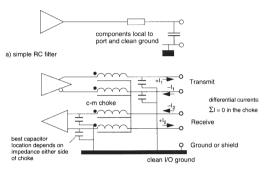


Feed-through capacitor

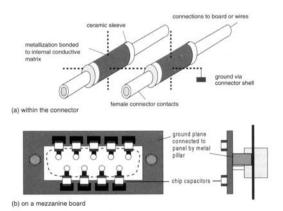


Filtering

Mains filter

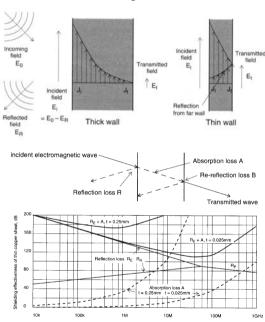

Improved mains filter

- VDR Voltage Dependent Resistor capture transients
- C_{X1} and C_{X2} 0.1 μF 0.47 μF
- All components in the mains must comply to specific safety requirements.


Filtering

I/O filtering

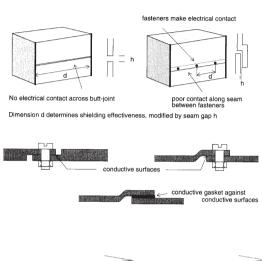
b) common mode choke/capacitor filter

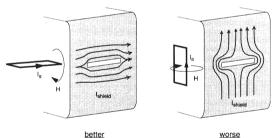

Connector pins

Shielding

Shielding effectiveness

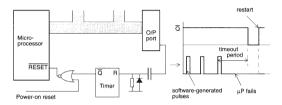
- Conductive material, Cu, Al, ...
- SE (dB) = Reflection loss (dB) + Absorption loss (dB) (- korrection term for multiple reflections within shield, dB)

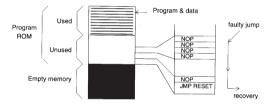



Remember!

- Low frequency magnetic fields are impossible to shield with just a conductive material
- A high-permeability material like mu-metal may be used to protect from LF magnetic fields by concentrating them to the bulk of the material

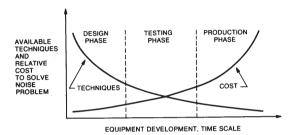
Shielding


Joints and openings



Software

Watchdog



Unused memory

EMC management

When to start

Immediately!

Litterature

- Williams, Tim, EMC for product designers, Newnes 2001.
- Ott, Henry, Noise reduction techniques in electronic systems, Wiley 1988.